Diabetes in the Goto-Kakizaki rat is accompanied by impaired insulin-mediated myosin-bound phosphatase activation and vascular smooth muscle cell relaxation.

نویسندگان

  • O A Sandu
  • L Ragolia
  • N Begum
چکیده

Our laboratory has demonstrated that insulin rapidly stimulates myosin-bound phosphatase (MBP) activity in vascular smooth muscle cells (VSMCs). In this study, we examined whether diabetes is accompanied by alterations in MBP activation and elucidated the components of the signaling pathway that mediate the effects of diabetes. VSMCs isolated from Goto-Kakizaki (GK) diabetic rats (a model for type 2 diabetes) exhibited marked impairment in MBP activation by insulin that was accompanied by failure of insulin to decrease the phosphorylation of a regulatory myosin-bound subunit (MBS) of MBP and inhibit Rho kinase activity resulting in increased myosin light-chain (MLC)20 phosphorylation and VSMC contraction. In VSMCs isolated from control rats, insulin inactivates Rho kinase and decreases MBS phosphorylation, leading to MBP activation. In addition to this pathway, insulin also appears to activate MBP by stimulating the phosphatidylinositol (PI) 3-kinase/nitric oxide (NO)/cGMP signaling pathway because treatment with the synthetic inhibitors of PI 3-kinase, NO synthase (NOS), and cGMP all blocked insulin's effect on MBP activation, whereas cGMP agonists and sodium nitroprusside (SNP) mimicked insulin's effect on MBP activation. VSMCs from diabetic GK rats exhibit reductions in insulin-mediated induction of inducible NOS protein expression and cGMP generation but normal MBP activation in response to SNP and cGMP agonist. This observation led us to examine the effect of diabetes on the activation status of the upstream insulin-signaling components. Although GK diabetes did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor or its content, insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation was severely impaired. This was accompanied by marked reductions in IRS-1-associated PI 3-kinase activity. We conclude that insulin stimulates MBP via its regulatory subunit, MBS, by inactivating Rho kinase and stimulating NO/cGMP signaling via PI 3-kinase as part of a complex signaling network that controls MLC20 phosphorylation and VSMC contraction. Defective signaling via Rho kinase and the IRS-1/PI 3-kinase/NOS/cGMP pathway may mediate the inhibitory effects of hyperglycemia and diabetes on MBP activation in this experimental model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired insulin-stimulated myosin phosphatase Rho-interacting protein signaling in diabetic Goto-Kakizaki vascular smooth muscle cells.

Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation and therefore contributes to the enhanced incidence of hypertension observed in diabetes. In this study, we examined the role of insulin on the association of the myosin-binding subunit of myosin phosphatase (MYPT1) to myosin phosphatase Rho-interacting protein (MRIP), a relatively novel member of the myos...

متن کامل

Impaired insulin-mediated vasorelaxation in diabetic Goto-Kakizaki rats is caused by impaired Akt phosphorylation.

Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation. Previously, we showed the phosphorylation of myosin-bound phosphatase substrate MYPT1, a marker of the vascular smooth muscle cell (VSMC) contraction, was negatively regulated by Akt (protein kinase B) phosphorylation in response to insulin stimulation. In this study we examined the role of Akt phosphoryl...

متن کامل

AKT phosphorylation is essential for insulin-induced relaxation of rat vascular smooth muscle cells.

Insulin resistance, a major factor in the development of type 2 diabetes, is known to be associated with defects in blood vessel relaxation. The role of Akt on insulin-induced relaxation of vascular smooth muscle cell (VSMC) was investigated using siRNA targeting Akt (siAKTc) and adenovirus constructing myristilated Akt to either suppress endogenous Akt or overexpress constitutively active Akt,...

متن کامل

Negative regulation of rho signaling by insulin and its impact on actin cytoskeleton organization in vascular smooth muscle cells: role of nitric oxide and cyclic guanosine monophosphate signaling pathways.

Recent studies from our laboratory have shown that insulin induces relaxation of vascular smooth muscle cells (VSMCs) via stimulation of myosin phosphatase and inhibition of Rho kinase activity. In this study, we examined the mechanism whereby insulin inhibits Rho signaling and its impact on actin cytoskeleton organization. Incubation of confluent serum-starved VSMCs with thrombin or phenylephr...

متن کامل

Selected contribution: insulin utilizes NO/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle.

Our laboratory has recently demonstrated that insulin induces relaxation of vascular smooth muscle cells (VSMCs) by activating myosin-bound phosphatase (MBP) and by inhibiting Rho kinase (Begum N, Duddy N, Sandu OA, Reinzie J, and Ragolia L. Mol Endocrinol 14: 1365-1376, 2000). In this study, we tested the hypothesis that insulin via the nitric oxide (NO)/cGMP pathway may inactivate Rho, result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 49 12  شماره 

صفحات  -

تاریخ انتشار 2000